Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover.

Identifieur interne : 000394 ( Main/Exploration ); précédent : 000393; suivant : 000395

A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover.

Auteurs : Christoph Loderer [Suède] ; Venkateswara Rao Jonna [Suède] ; Mikael Crona [Suède] ; Inna Rozman Grinberg [Suède] ; Margareta Sahlin [Suède] ; Anders Hofer [Suède] ; Daniel Lundin [Suède] ; Britt-Marie Sjöberg [Suède]

Source :

RBID : pubmed:28972190

Descripteurs français

English descriptors

Abstract

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, used in DNA synthesis and repair. Two different mechanisms help deliver the required electrons to the RNR active site. Formate can be used as reductant directly in the active site, or glutaredoxins or thioredoxins reduce a C-terminal cysteine pair, which then delivers the electrons to the active site. Here, we characterized a novel cysteine-rich C-terminal domain (CRD), which is present in most class II RNRs found in microbes. The NrdJd-type RNR from the bacterium Stackebrandtia nassauensis was used as a model enzyme. We show that the CRD is involved in both higher oligomeric state formation and electron transfer to the active site. The CRD-dependent formation of high oligomers, such as tetramers and hexamers, was induced by addition of dATP or dGTP, but not of dTTP or dCTP. The electron transfer was mediated by an array of six cysteine residues at the very C-terminal end, which also coordinated a zinc atom. The electron transfer can also occur between subunits, depending on the enzyme's oligomeric state. An investigation of the native reductant of the system revealed no interaction with glutaredoxins or thioredoxins, indicating that this class II RNR uses a different electron source. Our results indicate that the CRD has a crucial role in catalytic turnover and a potentially new terminal reduction mechanism and suggest that the CRD is important for the activities of many class II RNRs.

DOI: 10.1074/jbc.M117.806331
PubMed: 28972190
PubMed Central: PMC5704485


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover.</title>
<author>
<name sortKey="Loderer, Christoph" sort="Loderer, Christoph" uniqKey="Loderer C" first="Christoph" last="Loderer">Christoph Loderer</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.</nlm:affiliation>
<orgName type="university">Université de Stockholm</orgName>
<country>Suède</country>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jonna, Venkateswara Rao" sort="Jonna, Venkateswara Rao" uniqKey="Jonna V" first="Venkateswara Rao" last="Jonna">Venkateswara Rao Jonna</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Department of Medical Biochemistry, Umeå University, SE-901 87 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>the Department of Medical Biochemistry, Umeå University, SE-901 87 Umeå</wicri:regionArea>
<wicri:noRegion>SE-901 87 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Crona, Mikael" sort="Crona, Mikael" uniqKey="Crona M" first="Mikael" last="Crona">Mikael Crona</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.</nlm:affiliation>
<orgName type="university">Université de Stockholm</orgName>
<country>Suède</country>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rozman Grinberg, Inna" sort="Rozman Grinberg, Inna" uniqKey="Rozman Grinberg I" first="Inna" last="Rozman Grinberg">Inna Rozman Grinberg</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.</nlm:affiliation>
<orgName type="university">Université de Stockholm</orgName>
<country>Suède</country>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sahlin, Margareta" sort="Sahlin, Margareta" uniqKey="Sahlin M" first="Margareta" last="Sahlin">Margareta Sahlin</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.</nlm:affiliation>
<orgName type="university">Université de Stockholm</orgName>
<country>Suède</country>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hofer, Anders" sort="Hofer, Anders" uniqKey="Hofer A" first="Anders" last="Hofer">Anders Hofer</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Department of Medical Biochemistry, Umeå University, SE-901 87 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>the Department of Medical Biochemistry, Umeå University, SE-901 87 Umeå</wicri:regionArea>
<wicri:noRegion>SE-901 87 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lundin, Daniel" sort="Lundin, Daniel" uniqKey="Lundin D" first="Daniel" last="Lundin">Daniel Lundin</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and daniel.lundin@dbb.su.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm</wicri:regionArea>
<orgName type="university">Université de Stockholm</orgName>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sjoberg, Britt Marie" sort="Sjoberg, Britt Marie" uniqKey="Sjoberg B" first="Britt-Marie" last="Sjöberg">Britt-Marie Sjöberg</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and britt-marie.sjoberg@dbb.su.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm</wicri:regionArea>
<orgName type="university">Université de Stockholm</orgName>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28972190</idno>
<idno type="pmid">28972190</idno>
<idno type="doi">10.1074/jbc.M117.806331</idno>
<idno type="pmc">PMC5704485</idno>
<idno type="wicri:Area/Main/Corpus">000307</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000307</idno>
<idno type="wicri:Area/Main/Curation">000307</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000307</idno>
<idno type="wicri:Area/Main/Exploration">000307</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover.</title>
<author>
<name sortKey="Loderer, Christoph" sort="Loderer, Christoph" uniqKey="Loderer C" first="Christoph" last="Loderer">Christoph Loderer</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.</nlm:affiliation>
<orgName type="university">Université de Stockholm</orgName>
<country>Suède</country>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jonna, Venkateswara Rao" sort="Jonna, Venkateswara Rao" uniqKey="Jonna V" first="Venkateswara Rao" last="Jonna">Venkateswara Rao Jonna</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Department of Medical Biochemistry, Umeå University, SE-901 87 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>the Department of Medical Biochemistry, Umeå University, SE-901 87 Umeå</wicri:regionArea>
<wicri:noRegion>SE-901 87 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Crona, Mikael" sort="Crona, Mikael" uniqKey="Crona M" first="Mikael" last="Crona">Mikael Crona</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.</nlm:affiliation>
<orgName type="university">Université de Stockholm</orgName>
<country>Suède</country>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rozman Grinberg, Inna" sort="Rozman Grinberg, Inna" uniqKey="Rozman Grinberg I" first="Inna" last="Rozman Grinberg">Inna Rozman Grinberg</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.</nlm:affiliation>
<orgName type="university">Université de Stockholm</orgName>
<country>Suède</country>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sahlin, Margareta" sort="Sahlin, Margareta" uniqKey="Sahlin M" first="Margareta" last="Sahlin">Margareta Sahlin</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.</nlm:affiliation>
<orgName type="university">Université de Stockholm</orgName>
<country>Suède</country>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hofer, Anders" sort="Hofer, Anders" uniqKey="Hofer A" first="Anders" last="Hofer">Anders Hofer</name>
<affiliation wicri:level="1">
<nlm:affiliation>the Department of Medical Biochemistry, Umeå University, SE-901 87 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>the Department of Medical Biochemistry, Umeå University, SE-901 87 Umeå</wicri:regionArea>
<wicri:noRegion>SE-901 87 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lundin, Daniel" sort="Lundin, Daniel" uniqKey="Lundin D" first="Daniel" last="Lundin">Daniel Lundin</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and daniel.lundin@dbb.su.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm</wicri:regionArea>
<orgName type="university">Université de Stockholm</orgName>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sjoberg, Britt Marie" sort="Sjoberg, Britt Marie" uniqKey="Sjoberg B" first="Britt-Marie" last="Sjöberg">Britt-Marie Sjöberg</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and britt-marie.sjoberg@dbb.su.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm</wicri:regionArea>
<orgName type="university">Université de Stockholm</orgName>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">Comté de Stockholm</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actinomycetales (chemistry)</term>
<term>Actinomycetales (genetics)</term>
<term>Actinomycetales (metabolism)</term>
<term>Allosteric Regulation (MeSH)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Cysteine (chemistry)</term>
<term>Cysteine (genetics)</term>
<term>Cysteine (metabolism)</term>
<term>Electron Transport (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Protein Domains (MeSH)</term>
<term>Protein Multimerization (MeSH)</term>
<term>Ribonucleotide Reductases (chemistry)</term>
<term>Ribonucleotide Reductases (genetics)</term>
<term>Ribonucleotide Reductases (metabolism)</term>
<term>Zinc Fingers (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Actinomycetales (composition chimique)</term>
<term>Actinomycetales (génétique)</term>
<term>Actinomycetales (métabolisme)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Cystéine (composition chimique)</term>
<term>Cystéine (génétique)</term>
<term>Cystéine (métabolisme)</term>
<term>Doigts de zinc (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Multimérisation de protéines (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Ribonucleotide reductases (composition chimique)</term>
<term>Ribonucleotide reductases (génétique)</term>
<term>Ribonucleotide reductases (métabolisme)</term>
<term>Régulation allostérique (MeSH)</term>
<term>Transport d'électrons (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Cysteine</term>
<term>Ribonucleotide Reductases</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Actinomycetales</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Actinomycetales</term>
<term>Cystéine</term>
<term>Protéines bactériennes</term>
<term>Ribonucleotide reductases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Actinomycetales</term>
<term>Bacterial Proteins</term>
<term>Cysteine</term>
<term>Ribonucleotide Reductases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Actinomycetales</term>
<term>Cystéine</term>
<term>Protéines bactériennes</term>
<term>Ribonucleotide reductases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Actinomycetales</term>
<term>Bacterial Proteins</term>
<term>Cysteine</term>
<term>Ribonucleotide Reductases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Actinomycetales</term>
<term>Cystéine</term>
<term>Protéines bactériennes</term>
<term>Ribonucleotide reductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Allosteric Regulation</term>
<term>Catalytic Domain</term>
<term>Crystallography, X-Ray</term>
<term>Electron Transport</term>
<term>Models, Molecular</term>
<term>Oxidation-Reduction</term>
<term>Phylogeny</term>
<term>Protein Domains</term>
<term>Protein Multimerization</term>
<term>Zinc Fingers</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
<term>Doigts de zinc</term>
<term>Domaine catalytique</term>
<term>Domaines protéiques</term>
<term>Modèles moléculaires</term>
<term>Multimérisation de protéines</term>
<term>Oxydoréduction</term>
<term>Phylogenèse</term>
<term>Régulation allostérique</term>
<term>Transport d'électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, used in DNA synthesis and repair. Two different mechanisms help deliver the required electrons to the RNR active site. Formate can be used as reductant directly in the active site, or glutaredoxins or thioredoxins reduce a C-terminal cysteine pair, which then delivers the electrons to the active site. Here, we characterized a novel cysteine-rich C-terminal domain (CRD), which is present in most class II RNRs found in microbes. The NrdJd-type RNR from the bacterium
<i>Stackebrandtia nassauensis</i>
was used as a model enzyme. We show that the CRD is involved in both higher oligomeric state formation and electron transfer to the active site. The CRD-dependent formation of high oligomers, such as tetramers and hexamers, was induced by addition of dATP or dGTP, but not of dTTP or dCTP. The electron transfer was mediated by an array of six cysteine residues at the very C-terminal end, which also coordinated a zinc atom. The electron transfer can also occur between subunits, depending on the enzyme's oligomeric state. An investigation of the native reductant of the system revealed no interaction with glutaredoxins or thioredoxins, indicating that this class II RNR uses a different electron source. Our results indicate that the CRD has a crucial role in catalytic turnover and a potentially new terminal reduction mechanism and suggest that the CRD is important for the activities of many class II RNRs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28972190</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>292</Volume>
<Issue>46</Issue>
<PubDate>
<Year>2017</Year>
<Month>11</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover.</ArticleTitle>
<Pagination>
<MedlinePgn>19044-19054</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M117.806331</ELocationID>
<Abstract>
<AbstractText>Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, used in DNA synthesis and repair. Two different mechanisms help deliver the required electrons to the RNR active site. Formate can be used as reductant directly in the active site, or glutaredoxins or thioredoxins reduce a C-terminal cysteine pair, which then delivers the electrons to the active site. Here, we characterized a novel cysteine-rich C-terminal domain (CRD), which is present in most class II RNRs found in microbes. The NrdJd-type RNR from the bacterium
<i>Stackebrandtia nassauensis</i>
was used as a model enzyme. We show that the CRD is involved in both higher oligomeric state formation and electron transfer to the active site. The CRD-dependent formation of high oligomers, such as tetramers and hexamers, was induced by addition of dATP or dGTP, but not of dTTP or dCTP. The electron transfer was mediated by an array of six cysteine residues at the very C-terminal end, which also coordinated a zinc atom. The electron transfer can also occur between subunits, depending on the enzyme's oligomeric state. An investigation of the native reductant of the system revealed no interaction with glutaredoxins or thioredoxins, indicating that this class II RNR uses a different electron source. Our results indicate that the CRD has a crucial role in catalytic turnover and a potentially new terminal reduction mechanism and suggest that the CRD is important for the activities of many class II RNRs.</AbstractText>
<CopyrightInformation>© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Loderer</LastName>
<ForeName>Christoph</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jonna</LastName>
<ForeName>Venkateswara Rao</ForeName>
<Initials>VR</Initials>
<AffiliationInfo>
<Affiliation>the Department of Medical Biochemistry, Umeå University, SE-901 87 Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crona</LastName>
<ForeName>Mikael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rozman Grinberg</LastName>
<ForeName>Inna</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sahlin</LastName>
<ForeName>Margareta</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hofer</LastName>
<ForeName>Anders</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>the Department of Medical Biochemistry, Umeå University, SE-901 87 Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lundin</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and daniel.lundin@dbb.su.se.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sjöberg</LastName>
<ForeName>Britt-Marie</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden and britt-marie.sjoberg@dbb.su.se.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>4RVZ</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.-</RegistryNumber>
<NameOfSubstance UI="D012264">Ribonucleotide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000192" MajorTopicYN="N">Actinomycetales</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000494" MajorTopicYN="N">Allosteric Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012264" MajorTopicYN="N">Ribonucleotide Reductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016335" MajorTopicYN="Y">Zinc Fingers</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">metal ion–protein interaction</Keyword>
<Keyword MajorTopicYN="Y">oligomerization</Keyword>
<Keyword MajorTopicYN="Y">oxidation-reduction (redox)</Keyword>
<Keyword MajorTopicYN="Y">phylogenetics</Keyword>
<Keyword MajorTopicYN="Y">ribonucleotide reductase</Keyword>
<Keyword MajorTopicYN="Y">thioredoxin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28972190</ArticleId>
<ArticleId IdType="pii">M117.806331</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M117.806331</ArticleId>
<ArticleId IdType="pmc">PMC5704485</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D387-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jul 30;10(7):e0134293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26225432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jan 15;22(2):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 1998 Oct;2(5):650-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9818192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life (Basel). 2015 Feb 27;5(1):604-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25734234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jul 25;264(21):12249-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2663852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Feb;15(2):330-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Oct 13;31(40):9752-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Nov 30;38(48):15915-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10625458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W252-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24782522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2003 Jun;103(6):2167-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12797828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2015 Apr 7;54(15):4597-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25694369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3826-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12655046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Jul 02;4:5539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24986213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2006;75:681-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2004 Nov;11(11):1142-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15475969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Mar 5;283(5407):1499-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1312-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2002 Feb;148(Pt 2):391-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2015 Dec 1;54(47):7019-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26536144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Oct 25;33(42):12676-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7918494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2014 Jan 13;15:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24410852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1974 Jan 15;13(2):222-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4358940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Aug 25;258(16):9831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6309786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Mar 12;274(11):7182-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Nov 8;33(44):13126-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7947718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2002 Apr;9(4):293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Oct 10;254(19):9627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">385588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2010 Jul 13;10:210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2009 Aug;14(6):923-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19381696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 28;275(4):2463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 29;280(17 ):16571-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15722359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1974 Jan 15;13(2):211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4358939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Sep 10;292(1):151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10493864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2009 Jun;30 Suppl 1:S162-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19517507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 25;272(17):11236-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9111025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Sep 12;92 (19):8759-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2014 Apr 17;4(2):419-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24970223</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>Comté de Stockholm</li>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
<orgName>
<li>Université de Stockholm</li>
</orgName>
</list>
<tree>
<country name="Suède">
<region name="Svealand">
<name sortKey="Loderer, Christoph" sort="Loderer, Christoph" uniqKey="Loderer C" first="Christoph" last="Loderer">Christoph Loderer</name>
</region>
<name sortKey="Crona, Mikael" sort="Crona, Mikael" uniqKey="Crona M" first="Mikael" last="Crona">Mikael Crona</name>
<name sortKey="Hofer, Anders" sort="Hofer, Anders" uniqKey="Hofer A" first="Anders" last="Hofer">Anders Hofer</name>
<name sortKey="Jonna, Venkateswara Rao" sort="Jonna, Venkateswara Rao" uniqKey="Jonna V" first="Venkateswara Rao" last="Jonna">Venkateswara Rao Jonna</name>
<name sortKey="Lundin, Daniel" sort="Lundin, Daniel" uniqKey="Lundin D" first="Daniel" last="Lundin">Daniel Lundin</name>
<name sortKey="Rozman Grinberg, Inna" sort="Rozman Grinberg, Inna" uniqKey="Rozman Grinberg I" first="Inna" last="Rozman Grinberg">Inna Rozman Grinberg</name>
<name sortKey="Sahlin, Margareta" sort="Sahlin, Margareta" uniqKey="Sahlin M" first="Margareta" last="Sahlin">Margareta Sahlin</name>
<name sortKey="Sjoberg, Britt Marie" sort="Sjoberg, Britt Marie" uniqKey="Sjoberg B" first="Britt-Marie" last="Sjöberg">Britt-Marie Sjöberg</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000394 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000394 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28972190
   |texte=   A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28972190" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020